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i.. SUMMARY

CARE Ill is a rellabillty program designed for the assessment of fault-

tolerant flight control systems. This program was developed by Raytheon

under the direction of Dr. J. J. Stiffler (NASA CR-3566). CARE Ill, Version

3, the most recent Raytheon developed version of CARE Ill, was the version of

the code used for this study.

Under NASA funding and direction, BCS was to verify the mathematical model

and code (Task i) and test stress the program (Task 2).

During this study, several problems with CARE Ill were identified.

problems concerned:

These

• Mathematical Modeling

• Numerical Procedures

• Code Implementation

• Use as a Design Tool

A subset of these problems was identified which cou]d be readily addressed.

A number of code modifications (Tasks 3 and 4) are described in this

document. The resulting code, delivered by BCS to NASA in February 1984, is

referred to as CARE Ill, Version 4. The problems addressed under Tasks 3 and

4 were:

• MARKOV COVERAGE

The coverage module in Version 3 was numerically unstable. For the

special case of a Markov coverage model, one with constant transition

rates, a numerically stable solution was implemented in Version 4 which

is also highly efficient. This solution is described in Section 2.0.

• SYSTEM FAULT TREE

System failure due to spares exhaustion is represented in CARE Ill by a

system fault tree. As implemented in Version 3, the calculation of



system unreliability does not completely represent the system fault

tree. In particular, the contribution of (:overage failure to the

system unreliability may be neglected for somesignificant cases. The

improved fault vector selection procedure for Version 4 is described in
Section 3.

SUBRUNS

CARE [II has size limitations on the critical pair fault trees (70

modules, 20 stages). To permit the handling of larger problems, the

system may be broken up into SUBRUNS, which are combined For system

assessment. As implemented in Version 3, the calculation of system

unreliability from SUBRUN unreliability does not assure a conservative

estimate of system unreliability. This problem is discussed in Section

4.1. An improved heuristic For extracting SUBRUN fault trees From the

system Fault tree for Version 4 is described in Section 4.2. Also, an

improved Fault vector generator was developed which improves the run

time For large problems.

• MATHEMATICAL MODEL AND IMPLEMENTATION

The mathematical model implemented in CARE Ill was verified For non-

transient Faults (CR-166096). Under Task 4, it was also verified for

transient Faults. The code has been modified in Version 4 to implement

the model correctly for transient Faults. The implementation of the

sparing rules has also been corrected. Additional code changes were

also made to improve the computational efficiency. A discussion of

these efforts is given in Section 5.0.

• TEST STRESSING

As part of the assessment of CARE Ill as a reliability tool, two real

fault-tolerant flight control systems were examined. Although FTMP is

a complex system with complications that are not easily represented,

CARE Ill offers sufficient Flexibility to permit a realistic

reliability evaluation. Although SIFT is very simple in design, it is



not amenable to analysis with CARE Ill. This is because SIFT is

composed of an active pentaplex with spares. CARE Ill is designed to

handle only duplex monitoring and triplex voting for Fault tolerance.

Section 6.0 provides a description of the analyses performed.
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2. THE MARKOV COVERAGE MODEL

The Coverage models characterize the system handling of faults. The Single

Fault Coverage model, SFCM, describes failures due to lack of fault detection

in a single module. The Double Fault Coverage model, DFCM, describes

failures due to coexisting Faults on critical pairs of modules. Both models,

presented in NASA CR-3566 and NASA CR-166096, are defined as semi-Markov

processes with exponential and/or uniform transition distributions.

A special case arises when all transitions occur according to constant rates,

i.e., exponential transition distributlons. The coverage models then become

homogeneous Markov processes. The structure of these processes allows for a

larger choice of solution techniques than those proper for Semi-Markov

models.

The Following section describes the _eneral approach for solving a time-

homogeneous Markov process. This framework is referred to in Sections 2.2

and 2.3 in the solution of the Markov coverage models SFCM and DFCM.

2.1 MARKOV PROCESSES

A Markov process is the probabilistic model that describes the dynamics of a

memory-less system, i.e., a system where the future behavior is independent

of the past when the present state is known.

In such processes, transitions between states occur at constant rates and the

probabilistic behavior is given by a system of ordinary differential

equations.

In the Coverage models there are a finite number of states which will be

numbered consecutively; state I is the initial state, i.e., state A in the

SFCM and state BtA2 in the DFCM.

The coverage functions to be computed are some state probabilities and some

intensities of entry into absorbing states. The problem reduces to finding

the former since the latter are linear combinations of these.

PRI_I_)ZNG PAGE BI.,ANK NOT FILMED JI_G_TINTIONALLY BLANK



A general algorithm used to evaluate the coverage functions is composed of

two steps:

I. Evaluate P(t), the vector of state probabilities for non-absorblng

states.

P(t) is obtained as the solution to the system of ordinary differential

equations

d

dt
P(t) = Gl P(t),

P,(O) if i is the initial state,

otherwise,

where G_ is the transpose of the matrix of transition rates between non-

absorbing states.

2. Evaluate p(t), the vector of intensities of entry into absorbing states.

p(t) is obtained as a linear combination of P(t).

p(t) = G2 P(t)

where G2 is the transpose of the matrix of rates for transition from

non-absorbing to absorbing states.

In the next two sections this algorithm is adapted to the characteristics of

the two coverage models and to the specific functions to be evaluated in each

case.

6
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2.2 HARKOVIAN SINGLE FAULT COVERAGE MODEL

Under the assumption that all transitions occur at constant rates, the SFCM

becomes a Markov process with states, transitions, and rates as shown in

Figure 2.2-I.

The Functions required by the Macro Reliability Model as outputs from the

SFCM are

pr(t)

PDp(t)

P_(t)

PL(t)

: intensity of entry into Failure state F,

: intensity of entry in detected as permanent state DP,

: probability of benign _tate B,

: probability of non-benign state B, and

: probability of latent state L,

where B = aggregate of states A, AE and BE;

and L= B

aggregate of states B and

for transient faults,

otherwise.

The desired Functions are obtained as fo]lows:

(i) Compute the state probabilities For the states A, B, AE and _

(P(t), i=1,2,3,4) by solving the Four dimensional system of

differential equations.

d
_ P(t) : G P(t),
dt

where G is given by

[ -(a+_PA+p) B (1-PA)¢c o ]

-8 o (I-PB)¢C

p O -(E+Q) B

o o oL -(E+B)

7
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(ii) Evaluate the required functions as linear combinations of the

functions obtained in (i). The specific calculations for each

function and each Fault type are shown in Table 2.2-I.

2.3 MARKOVIAN DOUBLE FAULT COVERAGE MODEL

The Markovian DFCM is shown in Figure 2.3-i.

The only function required as output From the DFCM is pod(t): intensity of

entry into the failure state DF.

This function is evaluated as

Poe(t) : L2P1(t) + ;k,P_,(t)

where the vector P(t) = (P1(t), P2(t), P3(t)) is the solution to the system

d
_ P(t) : G Pit),
dt

with matrix G given by

-(BI+Y2) o Bz ]
0 -(B2+YI) B I

a2 _ -(BI+B2)

2.4 IMPLEMENTATION OF MODEL

As shown in the previous section, the coverage model may be formulated as a

system of ordinary differential equations CODE's) for the Markov case. The

single fault model is fourth order and the double Fault model is third order.

Solution of the Markov model as a system of ODE's, rather than as a system of

Volterra integral equations, has several advantages. Software for the

numerical solution of ODE's is available that provides high order, variable

stepsize and numerically stable solutions. These features may be combined to

develop a reliable solution procedure for the Markov case that is highly

9
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B1 A 2

81 B2
DF

PA! _1

A1 B2

Figure 2.3-1 Markovian Double Fault Coverage Model
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accurate, yet efficient. In Task 3, BC$ implemented the GEARB algorithm for

ODE's in Version 4; it has proven to be efficient (up to 200 times faster

than the Version 3 code for solving the same Markov model) and numerically

stable.

Implementation of the ODE solution method for the Markov coverage model

required the addition of eight new subroutines to the COVRGE module and

inclusion of the GEARB numerical integration package (HSGEAR). The Version 4

code provides the user the option to use the Version 3 solution procedure or

the Version 4 method for the Markov case. (Variable MARKOV in NAMELIST set

FLTTYP may be set to I (de?ault) to select the Version 4 method). Figures

A.I-2 to A.I-4 illustrate the structure of the Version 3 and Version 4 code

and show which modules were modified or added.

For the single fault coverage model, subroutine MSNGFN computes the solution

using HSGEAR. Subroutine MSNGFD is used by HSGEAR to evaluate the

derivatives of the state probabilities. AFter the coverage model is solved,

the moments of the output coverage Functions are evaluated by MSNGMT using

HSGEAR. Subroutine MSNGMD is used by HSGEAR to evaluate the integrand for

the moment calculation. For the double fault coverage model, a procedure

similar to the single ?ault case is used to compute the solution and moments

of the output coverage functions using subroutines MDBLFN, MDBLFD, MDBLMT and

MDBLMD.

12



3. SYSTEN FAULT TREE ANALYSIS

In Lhe CARE Ill program the system unreliability is computed by the equation:

tP_L e_t

where L is the set of fault vectors e for which the system has Failed due to

spares exhaustion as defined by the _ystem Fault tree. Fault vectors are

generated in sets bY subroutine GNFLTVC in the CARE3 module. For each fault

vector, logic in GNFLTVC determines whether Q(t[_ or P*(t[_ is computed and

summed into the unreliability. For the case of no user supplied system fault

tree, Q(t[C) is computed for any C For which no stage is failed by exhaustion;

otherwise P*(t!_) is computed. This logic is consistent with the assumption

that the default system fault tree is an OR tree, i.e., the system fails if

any stage fails by exhaustion. For the case of a user supplied system fault

tree, Q(tIC) is computed on]y For those C selected by GNFLTVC; P*(tr_) is not

computed for any C. In this case, the sum of P* is computed in CARE3

directly from the minterm file for the ;ystem Fault tree generated by FTREE.

Several problems with the GNFLTVC f_ult vector selection and generation

procedure for the sum of Q calculation where identified in Tasks I and 2:

• Q(tlZ) is not computed for all C ¢ L,

• Q(tIC) is computed for some £ ¢ L,

• Inefficient C generation algorithm.

Review of the GNFLTVC code and test runs indicated that Q(tJO may not be

computed for some C for which the value of Q(ttO is a significant term in the

sum of Q calculation. In addition the user had no control over the selection

procedure. The algorithm for generating fault vectors in GNFLTVC generates

all fault vectors, although Q(t]O may be computed For only a small number of

vectors. The fault vector selection procedure was corrected with the Task 3

modifications and the generation algorithm was improved with the Task 4

changes.

13



3.1 FAUL[ VECTOR PROCESSING

In order to assure that all e ¢ L are processed and that the user may control

which Q(tl_) are ignored as insignificant, two capabilities are required:

• ability to test whether or not a given { E L

• ability to determine when Q(tl_ is small.

The system minterm file generated by FTREE can be used to address the first

requirement. Let the vector

L =(z(x) : x=l,2,..,NSTGES},

where z(x) = 0 or I be a system minterm; then a fault vector e c _ if

e(x)>n(x)-m(x) for all x for which x(x) = [, i.e., { "covers" _. Thus e ¢ L

only if C does not cover any minterm in the system minterm file.

Implementation of this test requires that the system minterms be stored in

core in a data structure designed to test efficiently whether a given fault

vector covers any minterm.

The second requirement can be addressed by choosing a different partition of

the fault vectors into sets for GNFLTVC. Let the sets Ln be defined as

Follows:

N

L = {_': 0 < e(x)_ n(x), _, e(x):= n} n= o,1,2,, NMA X

x=i

where

N = number of stages in the system,

.V

\" n(x)
NI,/A X = --

x= I

14



The Ln cover L in the sense that:

NM A

L= U (LnL).
n----O

In addition the values of Q(tl_ are decreasing over the Ln in the sense that

the numbers:

Q,, = max{Q(,'ie) ! e_tL nL)}
II

are monotonically decreasing for n_2.

Thus, if GNFLTVC is modified to generate fault vectors in the sets

Ln, n=O,l, .., Nmax, it is possible to be sure that Q(tl_ is computed for all

C _ L. In addition it is possible to identify an no for which Q(tl{) is less

than a user specified tolerance for all { _ Ln where n_no. Furthermore, the

Fault vectors in Ln may be generated hy a simple algorithm that does not

generate any vectors outside Ln.

3.2 IMPLEMENTATION OF FAULT VECTOR PROCEDURE

Version 3 of the CARE Ill program was _:,dified to implement the fault vector

selection procedure discussed in Section 3.2. The modified code, Version 4,

provides the user the option to use the Version 3 selection procedure or the

Version 4 selection procedure. (Variable IVSN in the NAMELIST set RNTIME may

be set to 3 or 4 (default).) As illustrated in Figure A.I-5, the

unreliabiity for a SUBRUN is computed by subroutine RLSBRN in the CARE3

module. If the Version 3 selection procedure is requested, RLSBRN calls

NFLTVDP and GNFLTVC just as in the Version 3 code. If the Version 4

selection procedure is requested, RLSBRM calls NFLTVDP, then RDSPS to.load

the system minterm data into core, and ?inally GNFLTS to compute the SUBRUN

unreliability.

15



Subroutine GNFLTS generates fault vectors in the sets Ln defined in Section

3.1, calls subroutine PRFLTS to compute Q(tl_e)or P*(tl_ For a fault vector

and monitors the change in size of the sum of Q and sum of P* over Ln; see

Figure A.I-9. The improved fault vector generation algorithm is coded

directly into subroutine GNFLTS. The processing of fault vectors is

terminated after set Ln if the change in the sum of Q For Ln is small

compared to the size of the sum of Q and the change in the sum of P* for Ln

is small compared to the size of the sum of P*. The logic for terminating

the generation of fault vectors is applied for set Ln only for n>2 and if

the user defined parameter LC did not affect the calculation of Q(tl_e)for any

e E Ln. (Parameter QPTRNC in NAMELIST set RNTIME is used to control the

termination of Fault vector processing.)

Subroutine PRFLTS determines whether C _ L or C c _ by calling subroutine

CKSPS which checks to see if C covers any system fault tree minterm. The

minterm data was processed by RDSPS and stored in a data structure in arrays

ITRM and jTRM designed for efficient checking to determine if a Fault vector

covers some minterm. If C E L, PRFLTS calls UNRELQ to compute Q(tl_, and if

c _ PRFLTS calls FPSTAR to compute P*(t!C)

ORIGINAL PAGE IS

OF POOR QUALITY
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4. SUBRUN ANALYSIS

In the CARE £11 program the system may be partitioned into SUBRUN's, which

consist of subsystems that are independent in the sense that modules in

different subsystems are not critically coupled as defined by the critical

pairs trees. For the case of no user supplied system fault tree, the system

unreliability is computed by the equation:

1 - R(t)= _'[ _' Q(d._)+ _" P*(_)[
s _ _L _ cL

IS ,$ "-'S a:

where Ls is defined by the fault vector selection procedure implemented in

subroutine GNFLTVC in the CARE3 module (see Section 3.). Ls may be

interpreted as the set of fault vectors for SUBRUN-S For which no stage in

SUBRUN-S is Failed by exhaustion. This corresponds to the natural

decomposition of the default system OR tree into an OR fault tree for each

SUBRUN-S.

For the case of a user supplied system Fault tree, the system unreliability

is computed by the equation:

tcL _gt_

where L is the set of fault vectors e For which the system has failed due to

spares exhaustion as defined by the system fault tree and Ls is defined by

the Fault vector selection procedure implemented in subroutine GNFLTVC in the

CARE3 module (see Section 3.). The sum of P* is computed in CARE3 directly

from the minterm File For the system fault tree generated by FTREE. Due to

the problems in the Version 3 Fault w_ctor selection procedure, it is not

possible to give an interpretation of Ls for this case. Furthermore, the

CARE Ill documentation does not specify any procedure For extracting a SUBRUN

Fault tree From the system fault tree.

17



4.1 SYSTEM FAULT TREE PROCESSING

Suppose that the system fault _tree is an OR with respect to the SUBRUN

decomposition, i.e., the system fault tree is an OR over a set of subtrees,

each of which has stages in only one SUBRUN (see Figure 4.1-I). The subtree

corresponding to each SUBRUN may be used to define a fault tree for the

SUBRUN, and then Ls is the set of fault vectors for SUBRUN-S for which the

SUBRUN has failed as defined by the SUBRUN fault tree. Thus the system fault

tree has a natural decomposition corresponding to the decomposition into

SUBRUN's and the CARE Ill estimate of the system unreliability is

conservative.

For the case of a system fault tree that is not an OR with respect to the

SUBRUN decomposition, there is no natural decomposition of the system Fault

tree corresponding to the SUBRUN decomposition; therefore a heuristic

procedure is required. One heuristic procedure is to extract from the set of

minterms For the system Fault tree the subset of minterms that include only

stages within a SUBRUN. This subset of minterms defines a fault tree for the

SUBRUN and Ls may be defined. With this construction, the system Fault tree

is approximated by the OR of the derived SUBRUN fault trees.

This heuristic has the advantage that for the cases:

• a single SUBRUN and any system fault tree, or

• multiple SUBRUN's with the system faul't tree an OR with respect to the

SUBRUN decomposition,

the natural decomposition of the system fault tree corresponding to the

SUBRUN's is obtained and the CARE Ill estimate of the system unreliability is

conservative. It has the disadvantage that in the general case, the estimate
\

of the system unreliability may be non-conservative since some Failure events

are ignored.

18
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Implementation of the heuristic for extracting SUBRUN fault trees From the

system Fault tree requires the capability of determining when a mlnterm

includes only stages within a SUBRUN. Let the vector

T_ = {T(x) : x=i,2,.., NSTGES}

(T(x) = 0 or I) be a system minterm; then _ includes only stages in SUBRUN-S

only if

dx)= 0

.'c_,SUBRUN- S

If £ passes this test, then the minterm For the fault tree For SUBRUN-S is

defined by:

= {T(x) : x_SUBRUNmS}.

4.2 IMPLEMENTATION OF SYSTEM FAULT TREE PROCESSINO

Version 3 o6 the CARE Ill program was modified to implement the heuristic For

extracting SUBRUN fault trees From the system fault tree. The modified code,

Version 4, uses the heuristic when the Version 4 fault vector selection

procedure is used. For the cases:

• a single SUBRUN and any system fault tree, or

• multiple SUBRUN's with the system fault tree an OR with respect to the

SUBRUN decomposition,

the Version 4 code will provide a conservative estimate of the system

unreliabllity. For a general system tree the estimate of system

unreliability for multiple SUBRUN's may be non-conservative. When the

Version 3 Fault selection procedure Is used, the Version 4 heuristic i5 not

applied because the Version 3 Fault selection procedure does use the SUBRUN

Fault tree. In this case, the concerns about fault vector selection,

described in Section 3, apply to each SUBRUN calculation and the estimate of

system unreliability may be non-conservatlve for any system Fault tree.

20



The extraction procedure described in Section 4.! is implemented in

subroutine RDSPS, which is called by subroutine RLSBRN before the call to

GNFLTS; see Figure A.I-5.

21





5. RELIABILITY NODEL

Complete verification of the CARE Ill model as applied to systems with no

transient faults is given in NASA CR-166096. In that analysis it is assumed

that within aggregate operational states all changes are due to fast coverage

transitions. Intuitively it can be argued that the dynamics within aggregate

states happen instantaneously and so the Macro model becomes a non-

homogeneous Markov process. More precisely, state probabilities are

expressed as renewal integrals which under the above assumptions are

approximated by the forward integral equations of a non-homogeneous Markov

process.

The justification of the macro model for systems susceptible to transient

Faults requires a Finer analysis since the previously used arguments do not

apply.

In Section

discussed.

justified.

5.1, the complications introduced by transient faults are

An intermediate model is defined From which the CARE Ill model is

5.1 JUSTIFICATION OF THE MODEL

Analysis of the coverage model shows that a module with a non-transient fault

is very rapidly removed From the system (deleted from use or causes coverage

failure). A transient fault may also become benign (enters B); the fault

then poses no Further threat and the module enters a fault free status where

it becomes exposed to new faults. A module can experience consecutive

transient faults until it either experiences a non-transient Fault or a

transient fault causes module isolation or system failure.

At the macro level, the degradation of a system is defined by the vector

C = (e([), e(2),...,e(x),...) where e(x) measures the degradation in stage-x.

The comparison of non-transient and transient Faults suggests that behavioral

differences be reflected in the definition of the vector C- In CARE Ill,

e(x) is defined as the number of stage-x modules with a non-transient fault

plus the number with a detected transient fault.



With this definition of the vector _ the assumption of fast dynamics within

aggregate states is no longer valid. The Macro model is not yet justified.

To illustrate this, two Identical systems with three modules and one fault

are analyzed. The Macro models corresponding to these systems are given in

Figure 5.1-1 for a non-transient fault, and in Figure 5.1-2 for a transient

fault. In these figures SFCM and DFCM represent fast transitions, whereas

represents slow transitions. Transitions due to occurrence of a new fault,

slow transitions, occur only across aggregate states in the non-transient

case but can occur within aggregate states in the transient case, e.g.,

transition from fault-free state 0 to actlve state A, both in macro state

G(O).

An intermediate model is defined by introducing the vector _ = (v($),

v(2),..., v(×),...), where v(x) is the number of stage-x modules with latent

transient faults. The states in the intermediate model are defined as

aggregates of Micro model states, as a function of the operational status of

the system and the parameters {, _ Similar notation to that used for the

Macro model is used, e.g., G({, _ denotes an operational state and P(tl_)

its probability.

Applying the structure of the intermediate model to the example, see Figure

5.1-3, it can be observed that only fast transitions occur within operationa|

states. The shortcoming of the Macro model when applied to systems with

transient faults is thus avoided.

5.2 MACRO MODEL RATE DERIVATION

The analysis in the last example may be extended to general systems, and it

follows that the intermediate model is approximately a non-homogeneous Markov

process. The probabilities for failure states in the Macro model, Q(tl{), are

obtained as sums of renewal integrals, corresponding to the contribution of

each of the micro states. More conclsely,
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(s.2-I)

The first term In (5.2-1) corresponds to coverage failures due to latent

faults or to the interaction of a new transient fault wtth a latent fault.

The second term corresponds to double fault coverage fatlures due to the

Interaction of a new non-transient fault wtth a latent fault.

A conservative estimate of Q(tl_ Is obtained by allowing a larger set of

risks on the operational states that lead to the failure state F(_. This is

attained by evaluating the probabilities and rates in (5.2-I) ignoring prior

coverage failures. This leads to multiple counting of coverage failures and

hence to conservative estimates of the rellabillty. Nevertheless, tight

bounds are expected since fault handling occurs at several orders of

magnitude faster than fault occurrence.

Under the above assumption, modules within a stage can interchange roles

within an operational state. Combinatorial techniques are then possible and

are used to analyze the status of modules within each stage as given in

Figure 5.2-I.

The formula for P*(tl_, the conservative estimate for operatlonal state

probabilities, follows from simple comblnatorlal analyses and Is given as a

product of binomial probabilities. The rates are derived using the principle

of inclusion and exclusion, following Rlordan (1958).

The mathematical expressions of the functions used in the evaluation of

coverage failure probabllltles are:
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t "faulty" modules

IJ latent non-transient

_'-I_deleted

n-{ "non-faulty" modules

v latent transient

ii

n-t-v fault-free

Figure 5.2-1 Status of Modules Within Each Stage
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' e(x) / [1- ,'(tix)! tt_[r(tJx)! ,,x;- e(x_
Z

i

exp {- I ] X(ulxi)du }

_P {- I I hoe(ul_)du}

i c PRtx)

i c TR(x)

PR(x) = set of non-translent stage-x faults,

TR(x) = set of transient stage-x faults.

_(_ = a'(tO+ A'(4{)+ X*(4{)

hv_xp)a'(_e_)=_ e(x)t- ._x)
X
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iePl_zJ
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tcT_x}

A'(4£(x,:_)) =

.y Z

i [ la(X)
laiZ)

+ (n(x)- e(x)) ho,vitlx p. xr) I

hDF(_Xp,X ;

A'(4_(x,y)) = _ _ P[ P(X);_f(x)l P

p(:} p(y}

hDF(4XP'Y ; (u(y)-- e(y))hDF(_xp,YT) I

p(x) /

icPRI x)

b._-_J=
N(q(x))

(n(x)- e(x)+ _(x))2

bray (_- It) =

Nx, (q( x), q(Y))

(n(x_ e(x_. p(x)) (n(y_ _(y)+ P(Y))

ho,(4,,y;= Y_ 7_ h..(_=,,'_
itPl_z_ je Pl_ y)
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t_PR(z| j_rl_ y)

h_r (dx! ,y j)
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x y

PIplx); 1 e(xllb=lt(x)-- p(xl I p(x)
ptx}ffi 0

+ (n(x}---e(x).-, l ) HL(t_ xT) ]
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p{x) pq)'J

where

u_%)
• b yff(x)--p(x),e(y_-p(y)),p(x) gc(dXp)

+ (n(x)-- e{x)) HL(t [ xT) ]

x(tlyr)= Y_ x(tly,)
jtTl_y)

for x=y

_,2,(tl£- !(y),e__)=
x

Xc_)(tl x;e_- ! (y),_e)

t( x)- 1

_(tlg__l_.(y,,e_)= .\(t,xp)(n(x)- e(x)-+, l)[ l- HL(tIxT) [ _,

p( x)= 0

Plp(xt tl e(z_ l i

for x*y

• bx,z(e(x)- p(x)-- I HL(t_x _
-- p(x) + (n(x)- e(x)) ltL (t I xr} [

x(tl=_e-_t(v),e}=._ ._(tlypl(nlyl-e(y)+tilt- Ucttlyr)] . __ _'_elo,_):,_e(_)_ta(sr,tte(y)--tl
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x_%)
• bx,(e(x)- p(x), e(y)- p(y)- 1 ). HL(I_xp)

p(x) + (n(x)- e(x)) Hc(tl Xr) ]
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5.3 IMPLEMENTATION OF NODEL

In tasks 3 and 4, Version 3 of the CARE Ill program was modified to implement

the reliability model as defined in the previous section. The modified code,

CARE Ill, Version 4, correctly implements the CARE Ill sparing representation

defined by the NOP data and the case of transient faults. Additional code

changes were made to improve the computational efficiency of the CARE3 module

and to reduce the use of I/O by the code.

Implementation of the complete CAREI Ill reliability model required

modification of the input (CAREIN), coverage (COVRGE) and reliability (CARE3)

modules of CARE III, Version 3. Figures A.1-I to A.I-IO in Appendix A

illustrate the structure of the Version 3 and Version 4 code and show which

modules were modified or added. The overall structure of the CARE Ill

program was not changed in the modifications. The crucial changes for the

reliability model occur in subroutine CRTLPRS in module CAREIN, subroutine

SNGFLT in module COVRGE and subroutines NFLTVDP, GNFLTVC and SUMMAT in module

CARE3; these are discussed below.

5.3.1 Calculation of the Critical Pairs Counts (CRTLPRS)

In Version 3, the critical pairs minterm da_a For a SUBRUN is processed and

the bx,y Function is computed in subroutine CRTLPRS in the CAREIN module. In

Version 4, the calculation of the bx,y Function is deferred to the CARE3

module and only the critical pairs minterm data for a SUBRUN is processed in

CRTLPRS (see Figure A.I-I). In Version 4, CRTLPRS is completely new and

subroutines GNIQX, RDCPS and GNKXY are new code. The user's NOP data is

processed by GNIQX and arrays IQXNOP ann KQXNOP are established to give q(x)

as a function of e(x)-_(x). The minterm data is read by RDCPS and critical

pair counts are accumulated in array KNT by subroutine GNKXY. The KNT array

contains the Following data:

KNT (i(x), y, q(y)) number of x,y critical pairs that

involve module i(x) in stage-x and

some stage-y module given q(y) in-

use stage-y modules.
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The data stored in the IQXNOP, KQXNOP and KNT arrays is sufficient for the

calculation of the bxoy function performed in the CARE3 module. The critical

pair counts Nx,x(q(x)) and Nx,y(q(x),q(y)) can be easily obtained from the KNT

array.

5.3.2 Calculation of the Counts Nx,x and Nx,y

The evaluation of the bx,y function requires the calculation of the counts

Nx,x(q(x)) and Nx,y(q(x),q(Y)). Since these counts depend only on the critical

pair counts (computed in the CAREIN module), subroutine NFLTVDP in the CARE3

module was modified to call subroutine GNCPS to do the calculation (see

Figure A.I-6). For each possible pair of stages x,y, GNCPS checks to see if

x,y are critically coupled by checking the KNT array; x,y are critically

paired only if

[(X) = L

KNT(i(x) y, n(y))> O.

Array IJSTGIN is used to flag whether or not x,y are critically coupled.

When stages x,y are critically paired, the counts Nx,x(q(x)) and

Nx,y(q(x),q(y)) are computed using subroutines GNNXX and GNNXY and stored in

arrays NXX and NXY:

1 q(x)

N_x(qlx))= 2 \_
z(x) = l

KN'Ili(x),x,q(x))

q{_J

Nl_,y(q(xl, q( y)) = _ KNT(i(x),y,q(y))
z(x)= i
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An improved version of the bx,y data structure and [/0 scheme is used to store

the NXX and NXY arrays.

5.3.3 Calculation of bx,y Function

As discussed in Section 5.2, the bx,y Function depends only on C _ and so it

may be computed before the reliability _odel is solved. Subroutine NFLTVDP

in module CARE3 was modified to call subroutine GNBPS to do the calcula_cion

(see Figure A.I-6). For each possible pair of stages x,y, GNBPS computes the

bx,y Function only if x,y are criticaly coupled as noted in the IJSTGIN array.

When computation is indicated, the bx,y Function is computed by subroutines

GNBXX and GNBXY and stored in arrays BXX and BXY:

t_xx(e(x}- _(x)) =
NXX(q(x))

V(x)- e(x)+ la(X)

BxY(e(xr-- o(x), e(y)- _ty_) =
NXY(q(x). q( y))

(n(_)--e(x)+plxl}ln(y)--e(y_- o(y))

The values of e(x) and e(y) are defined by C which was selected by GNFLTVC in

Version 3 and GNFLTS in Version 4; q(x) and q(y) are defined by e(x)-u(x) and

e(y)-u(y) using the [QXNOP and KQXNOP arrays; and _(x) and U(Y) are in the

range, O_u(x)_e(x), O_p(y)_e(y).

An improved version of the bx,y data structure and I/O scheme is used to store

the BXX and BXY arrays.

5.3.4 Calculation of Q(_{)

The calculation of Q(tle) is computed by subroutines UNRELQ and FINTGRT in the

CARE3 module:

ft

Q(__e)= t,, K(de-')d_
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Subroutines UNRELQ and FINTGRT were not modified in Version 4.

K(tl_ is computed by subroutine SUMMAT:

The function

K(_= P-(__e)a'(_e_3+P'(_x'(4e_b+\- e,(_e-1(x))x'_'_4e)
w a _

where the first term represents single fault failures, the second term

represents double fault failures with no new fault, and the third term

represents double fault failures due to a new fault. In Version 3, these

terms are computed in subroutines FAPC, FAC and FCYJ, respectively, and FAC

and FAYJ make use of the symmetry in x,y of the bx,y function.

The order of calculation used in FAC and FCYJ introduces several

inefficiencies into the solution of the reliability model: excessive I/O due

to multiple passes through the bx,y data, recalculation of terms which are

independent of C (they are only functions of time) and excessive logical

tests in the inner loops of the calculation. Subroutine GNBPS in module

CARE3 was modified to call subroutine GNTXX and GNTXY to evaluate all terms

in the K(tI{)calculation that depend only on time before the reliability

model was solved see (Figure A.I-8). Subroutine SUMMAT and the bx.y data

structure and [/0 scheme were completely modified to eliminate the excessive

use of I/O and logical tests. (If the number of pairs of critically coupled

stages in the user's model does not exceed 20, then all I/O operations

involving the bx,y data is avoided.) The Version 3 subroutines, FAC, FCYJ,

FBCRTL and FDSCRTL are replaced in Version 4 by subroutines GNFXX, FBIXX,

FB2XX, FBIXY and FB2XY (see Figure A.1-I0).

As discussed in Section 5.1, the transient fault model introduces an extended

interpretation of the fault vector _ In Version 4, the logic in subroutines

GNFLTS and SUMMAT was extended to properly include this revised

interpretation of fault vectors.
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5.3.5 Method of Moments

The calculation of K(tl{) requires the evaluation of several convolution

integrals:

t_(t) = P2 (r) PI (t- _) dr,
o

where P1(t) is a measure of the rate at which a certain class of faults

occurs and P2(z), one of the coverage output functions, is a function of the

interval _ between that occurrence and the entry of the fault .into a

particular coverage state. The numerical convolution procedure implemented

in the CARE Ill module uses the method of moments. The calculation is based

on two assumptions: P_(t) is a much more slowly varying function of time

than P2(t); and P:(t) decays rapidIj to zero. The First assumption is

consistent with the CARE Ill assumption that coverage rates are much higher

than module failure rates. However, the second assumption was not valid for

the coverage output function PDP- TO correct this problem, subroutines

SNGFLT and MSNGFN in the COVRGE module were modified to provide the intensity

PDP as an output instead of Pgp. The CARE3 module was appropriately modified

to compute hDPT from PDP instead of PD_- The overall result of these changes

is a more accurate evaluation of hDp T.
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6. TEST STRESSING

As part of the validation task of CARE Ill, the reliabi]ity of hypothetical

systems was evaluated• The answers obtained compared Favorably with analytic

results. As part of the test stressing, two fault-tolerant systems were

evaluated using CARE Ill; Section 6.1 describes the FTMP analysis, and

Section 6.2 the SIFT problem• Although FTMP presented a complex architecture

For representation, CARE Ill offered sufficient flexibility to approximate

the system. SIFT, although significantly simpler than FTMP, illustrated that

CARE Ill is limited to simplex, duplex, and triplex systems; pentaplex (3-

out-of-5) voters cannot be represented well.

6.I FTMP

The FTMP system (NASA CR-166071,72,73) consists of ten LRU's (line

replaceable units) and connecting buses. Each LRU contains a processor, a

clock generator, a power supply, a memory (slave region) and two bus guardian

units (BGU). For the reliability analysis, the BGU's may be lumped in with

the processor; their failure rates should be added together. Similarly the

memory includes the real time clock, system control register and the I/O

port. There are Four different types of buses: poll (P), receive (R),

transmit (T) and clock (C). There are 5 of each type of bus.

Fault-tolerance is incorporated by trip]ex voting with majority rule (except

for clocks). No single-fault coverage failures should occur. The system is

initially composed of three processor triads with one spare processor, two

memory triads with four memories as spares, and one clock quadruplex with six

spare clocks. The modules in a triplex (quad for clocks) are rotated. At

any given time the processors in a triplex may be from any of the LRU's--

similarly for the memories and clocks.

The P, R and T buses each form a tripiex with two spares. The C bus forms a

quad with one spare• IF no inter-LRU dependence existed, the minimum number

of modules needed for each stage are: processor (5), memory (5), clock (3),

P, R and T bus (2 each), C bus (3).

k' _:_ _" _ ' _-, _,, ".:._T_'__" _ _ L'_> ;_ _i_
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The Failure rates used in the analyses are:

processor (plus 2 BGU's)

memory

clock

power supply

P, R, T and C bus

2.2 x lO-41hr

2.0 x 10-41hr

1.0 x lO-5/hr

1.0 x lO-4/hr

1.0 x lO-5/hr

Dependence arises with FTMP in that if a processor within an LRU fails, no

other modules are affected. If a clock or power supply fails, all the

modules within the LRU may function improperly. When a clock or power supply

are identified as faulty, the entire LRU is deleted from the system. A

Faulty slave region may not affect the operation of the rest of the LRU;

however, if identified as faulty, it will cause the entire LRU to be deleted.

Dependence affects the reliability of the system in two ways, in the

computation of spares exhaustion failure and of coverage failure,

When assessing spares exhaustion, dependence complicates the relationship

between the number of Failed modules and the number of operational modules

remaining. For example, if two processors fail and then two memories fail

(under perfect coverage), the number of operational processors left can be

six, seven or eight. This depends on whether the failed processors and

memories are from the same LRU (eight processors left), different LRU's (six

left), or one LRU with a processor and then a memory failure, one LRU with a

processor Failure and one LRU with a memory failure (seven left).

CARE III does not allow for module interdependency. An added complication is

the functional numbering in CARE Ill, as opposed to physical numbering.

Processor 1 denotes the processor that currently is performing function I;

this in FTMP would be functioning in the first triad. Processor I could be

from any LRU. In particular, processor i and memory I will, most of the

time, be from separate LRU's. A discussion of functional numbering is

provided in Section 3.0 of the BCS Final Report.

As our first-cut model for spares exhaustion, all the modules within an LRU

are lumped together to form a single stage. The combined stage failure rate
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is the sum of the module failure rate_;. Perfect coverage is assumed. This

model leads to a conservative eva_uation (overestimate) of exhaustion

failure. Figure 6.1-1 provides the control information For this FTMP model.

The estimate obtained for the probability of system exhaustion failure is

P'SUM = 1.45 x 10-11.

The unreliability obtained satisfies our requirements (P significantly less

than 10-9 for a I0 hour flight); no further analysis of exhaustion failure is

required. If this conservative procedure did not provide satisfactory

results, a more detailed model could be evaluated. One could let each module

be a stage, and thus represent in detail what combinations of module failures

cause exhaustion failure. The problem with such a representation is that the

system fault tree becomes quite complex and there is an appreciable chance of

user input error. This model still assumes perfect coverage since one cannot

input system sparing rules and the success configuration information (NOP).

For the FTMP analysis this more detailed modeling was not necessary.

Initial information on FTMP was obtained From NASA CR-166071, CR-166072 and

CR-166073. Additional information and assistance on FTMP was provided by Mr.

C. Liciega From NASA-Langley. The failure rate values were based on those

used in the Draper reliability ana]yse_;. The coverage parameters were based

on the FTMP Fault injection study, CR 166073, and a description of how the

system operates.

Exponential transition rates were used For the coverage analyses. The _(t)

transition can be taken as exponential, since the transition of a faulty

module from a latent state to an error generating state can be considered

random in time. The detection rate, 5(t), is certainly based on how often

self-tests are run. There are 37 self-test programs for the processor, clock

generator and bus. A new program is run every 320 milliseconds. Once a

module is detected as Faulty and the e_'ror latches are set, another clocking

cycle is required, 320 milliseconds, before the module can be deleted and

replaced by a spare. Each test program does not detect solely a unique type

of fault. Certain types of Faults w_ll be detected by many of the self-

tests. A uniform distribution does mot appear to describe this operation

well. An exponential distribution was used, such that five percent of the
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$FLTTYPDEL (I) = 1.0E6,
RHO(i) = 0.0,

c (i) : i.o,
IDELF(1) = I,

IRHOF(1) : 1,

IEPSF(1) : I,

CVPRNT = .TRUE.$

$STAGES NSTGES = 5,

N(1) = 10, ( LRU

M(1) = 5,
N(2) = 5, _ P Bus
M(2)= 2,
N(3) = 5, _ R Bus
M(3) : 2,
N(4) = 5, .( T Bus
M(4) = 2,
N(5) = 5, I C Bus
M(5) = 3, !

IRLPCD = 45

SFLTCAT RLM (1,!) 5.3E -4, .- LRU Failure Rate
RLM (1,2) I,OE:

: --59

RLM(I,3) : I.OE -5,
RLM (I,4) = I.OE -5,
RLM (1,5) = I.OE -55

SRNT_ME FT = i0.0,
[TBASE = i,
SYSFLG = .TRUE.,

CPLFLG = .FALSE.$
FTMP PUN WITH LRU TREATED AS A STAGE
1566
6012345

Figure 6.1-I Input File for Obtaining Bound on Exhaustion

Failure with Dependence
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probability was to the right of 38 x .320 milliseconds. With this

distribution, "more of the action" happens early, which represents the

overlap in the self-test programs. Furthermore, the five percent tail to the

right of the theoretica] maximum detection time should lead to a slightly

conservative answer.

The parameter For the exponential distribution is the inverse of the mean.

Using Table l, CR-166073, _ was taken as I/(mean time to detect error - 160

milliseconds), converted to hours. The detection time was adjusted by 160

milliseconds since, on the average, there will be that much delay between

when an error is propagated and when an error Flag is set.

The _(t) transition is From an active e_'ror producing state, AE, to either

detected, identified and reconfigured _;tate, Dp, or to coverage failure F.

The length of time in the state AE is important For assessing double-fault

coverage Failures; only the transition to Dp need be considered. The mean

time for this transition was taken as the sum of the mean times For

identification and For reconfiguration, as given in Table 7, CR-166073, plus

160 milliseconds. The 160 millisecond _djustment allows for the average time

between initiation of error propagation and the setting of error flags.

Using this mean time, converted to hours, provides the exponential parameter

c for the coverage model.

Coverage failure is also affected by dependence. For FTMP no single-fault

failures in theory can occur; double-fault failure must address dependence.

Consider three processors in a triplex (Figure 6.1-2). Any two faulty

processors will defeat the majority voter; thus all pairs of processors in

the triad are critically paired. _ut consider a clock failure in an

associated LRU. This causes faulty processor operation within the LRU.

Hence the clock is critically coupled to the other two processors.

Similarly, the power supply and memory are critically coupled with the

processors (and clocks). In order to represent this dependence, one defines

an equivalence class for each LRU. A double-fault failure may occur if there

is one Fault in two of the equivalence classes. The control file for the LRU

critical pair fault tree is given in Figure 6.1-3. The answer obtained by

this representation is conservative, since some module pairs are incorrectly
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Processor Triad (Pi, Pi, PK)

LRUi LRUI LRUK

Pi

Mi

Q

PSi

Pj

MI

Cj

PSi

PK

MK

CK

PSK

Two Faulty

Processors

Processor

Coverage

Failure

Ct Faulty -_ Pi Faulty

+

Pj or PK Faulty

Processo r

Coverage

Failure

Ci Faulty + _ Faulty

MK or CK

or

PSK Faulty

÷ PK Faulty

etc.

m=_
v

Processor

Coverage

Failure

(with no

direct

processor

failures)

Figure 6.1-2 Dependence Effect on Coverage
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SFLTTYP DEL (i) = 8.87E2,
RHO (I) = 1.91E4,

c (1)--l.o,
EPS (i) = 1.05E4,

DEL (2) = 0.0,

RHO (2) = 8.39E3,

EPS (2) = 1.12E4,

DEL (3) = 8.87E2,

RHO (3) = I.OE6,

EPS (3) = 1.13E4,

DEL (4) = 8.87E2,

RHO (4) = 2.05E3,

EPS (4) = 7.8E3,

DEL (5) = 8.87E2,

RHO (5) = 1.0E6,

EPS (5) = 1.13E4,
NFTYPS = 5,
CVPRNT =

$STAGES NSTGES =
,(1): lo,
M(1) = 5,

N(2) = I0,
M(2) = 5,
N(3) : io,
M(3) = 3,
N(4) = I0,
M(4) = 5,
,(51 ; 5,
,_(_)--3,
N(6) -- 5,
M(6) = 2,
,(7): 5,
M(7) = 2,
,(_): 5,
M(8) = 2,
NOP(I,I) : 9,
NOP(2,1) : 6,
NOP(I,2) = 6,

NOP(I,3) = 9,

NOP(2,3) = 6,

NOP(I,4) = 9,
NOP(2,4) = 6,
NOP(I,5) = 4,

NOP(I,6) = 3,

NOP(I,7) = 3,

NOP(I,8) = 3,
IRLPCD = I$

.TRUE.$

8,

I Processor

I Memory

Clock

IPower Supply

I P Bus

i R Bus

T Bus

I C Bus

Figure 6.1-3 Input File for Estimate of Coverage
Failure, I Subrun
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$FLTCAT JTYP (1,1) : I,
JTYP (I,2) = 2

JTYP (1,3) = 3,
JTYP (1,4) : 5,

JTYP (1,5) = 4,

JTYP (1,6) = 4,

JTYP (1,7) = 4,

JTYP (1,8) = 4,

RLM (1,1) = 2.2E-4,

RLM (1,2) = 2.0E-4,

RLM(I,3) = 1.0E-5,

RLM (1,4) = 1.0E-4,

RLM (1,5) = I.OE-5,
RLM (1,6) = I.OE-5•
RLM (1,7) = I.OE-5,
RLM (1,8) = 1.0E-55

SRNTIME FT = 10.0,
ITBASE = i,

SYSFLG = .TRUE.,

CPLFLG = .TRUE.$
FTMP MODEL IV

1 8 9 9

9012345678
CP TREE FOR MODEL IV
1 60 61 78
ii I0
2 II 2O
3 21 30
4 31 40
5 41 45
6 46 50
7 51 55
8 56 60
61 0 1 Ii 21 31
62 0 2 12 22 32
63 0 3 13 23 33
64 2 61 62 63
65 0 4 14 24 34
66 0 5 15 25 35
67 0 6 16 26 36
68 2 65 66 67
69 0 7 27 37
70 0 8 28 38
71 0 9 29 39
72 2 69 70 71
73 2 21 22 23 24
74 2 41 42 43

75 2 46 47 48

76 2 51 52 53

77 2 56 57 58

78 0 64 68 72 73 74 75 76 77

Figure 6.1-3 (Continued)
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represented as being critically coupled (e.g., processor of LRU 1 and memory

of LRU2). This equivalence class representation, however, makesFor an easy

representation of the LRU dependence eFFect of processor and memorytriads

simultaneously. Using a single critical pair tree, the probability of a

coverage Failure obtained is Q SUM= 6.039 x 10-9. Note that the upper bound

for exhaustion failure, 1.45 x 10-11, affects only the third significant

digit. The problem was rerun using two critical pair trees (two subruns)
with processors, memories and power supplies in the First subrun and buses in

the second (Figure 6.1-4). This reduces the CPUrun time and drastically

reduces the amount of output. The a_swer obtained differed only at the
seventh significant digit. In most of the detailed analyses, subruns were

used, providing highly accurate results at a much lower cost. The

restrictions For the use of subruns are given in Section 4.0.

6.2 SIFT

SIFT operates as a one-stage system which consists of a pentaplex of modules,

plus spares. Within the pentaplex, FauTt tolerance is based on three out of

Five voting. Coexisting Faults on three of the modules within the pentaplex

are necessary to cause coverage Failure of the system. This means that

critical triplets, as opposed to critical pairs, need to be considered when

assessing the probability of coverage failure.

CARE Ill has been suggested as an evaluation tool For such systems by

disregarding Failure probabilities unless enough Faults are present. Q(tj_),

the probability of coverage Failure when _ Faults have occurred, is evaluated

only when _LC, where LC is an input parameter. For a pentaplex, LC is set

equal to 3.

IF transient Faults are possible, then literal triplets can occur even when

_s2, (_ counts transients only when they cause the module to be isolated).

The use of the LC parameter will lead in this case to very optimistic

results.

If only non-transient Faults are possible, the use of LC=3 gives correct

results only in the case of a pentaplex with no spares. If the system
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FTMPMODELIV
1899
9012345678
CPTREEFORMODELIV - SUBRUNI
I 40 61 74
Ii i0
2 II 20
3 21 30
4 31 4O
61 0 1 Ii 21 31
62 0 2 12 22 32
63 0 3 13 23 33
64 2 61 62 63
65 0 4 14 24 34
66 0 5 15 25 35
67 0 6 16 26 36
68 2 65 66 67
69 0 7 27 37
7O 0 8 28 38
71 0 9 29 39
72 2 69 70 71
73 2 21 22 23 24
74 0 64 68 72 73
CP TREE FOR MODEL IV - SUBRUN 2
41 60 74 78
5 41 45
6 46 50
7 51 55
8 56 60
74 2 41 42 43
75 2 46 47 48
16 2 51 52 53
77 2 56 57 58
78 0 74 75 76 77

Figure 6.1-4 Critical Pair Tree for Two Subruns
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consists of one or more pentaplexes and spares, the reliability "estimate

given by CARE Ill is extremely conservative.

Three events contribute to Q(t_) in CARE Ill:

(i)

(ii)

(iii)

three latent faults in a pen%aplex;

three latent faults; two of these in a pentaplex;

two latent faults in a pentaplex, one deleted module.

Of the three cases, only the first corrE_sponds to a true coverage failure in

a pentaplex. The last two cases are included in the evaluation of Q(tl3)

since CARE Ill is based on a critical pair type architecture. The first two

events are of the same order, since both cases depend on three latent Faults.

For the highly reliable systems being considered, Fau]t handling is severa)

orders of magnitude Faster than Fault occurrence and the third event is

correspondingly considerably greater t_,an the first two; it will be the

dominating term in the eva]uation of Q(ti3). The corresponding coverage

Failure estimate will then be unacceptably conservative.

As an example, consider a system consisting of one pentaplex and one spare.

Modules are susceptible to a permanent fault which occurs at constant rate

and detection occurs at constant rate 5. If 6 >> _ then

TRUE UNRELIABILITY

CARE Ill UNRELIABILITY

In particular if L=5xlO-4; _=I00 and t=1_ the respective values are 3.7xi0 -13

and 7.4xi0-II.

4g
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APPENDIX A

This appendix documents the modifications made to CARE [II, Version 3, in

Tasks 3 and 4; the modified program is referred to as CARE [I[, Verston 4.

The first section describes the changes in terms of the "call trees" of the

principal modules of the program. The second section consists of the "design

sheets" prepared for all the modified or new subroutines in Version 4.

A.1 CALL TREE SPECIFICATIONS

In this section an overview of the dif£erences between the Version 3 and the

Version 4 code is presented in terms of the "call trees" of the principal

modules of the program. In Figures A.I-I to A.I-IO, the modified or new

subroutines in Version 4 are indicated by boldface type. The Figures show

that the overall structure of the CARE Ill program was not changed in the

Task 3 and 4 modifications.

A.2 DESIGN SPECIFICATIONS

The design of each of the modified or new subroutines in the Version 4 code

is summarized by a "design sheet" presented in this section. These design

sheets were prepared as the first step in the coding of the Version 4

changes. They are an overview of the subroutines; not all computational

details are included. However, they do indicate the overall sequence of

computations and the data needed for and generated by each step in the

subroutine. The design sheets are presented in the Following order:

CAREIN;

- Figures A.2-1 to A.2-5

COVRGE: Markov model;

- Figures A.2-6 to A.2-13

CARE3: Main contro] and computation subroutines;

- Figures A.2-14 to A.2-21".

PRI_CEDING PAGE BLANK NOT FILMED
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CARE3: Calculatlon of NXX and NXY data;

- Figures A.2-22 to A.2-24

CARE3: Calculation of BXX and BXY data;

- Figures A.2-2S to A.2-2g

CARE3: Calculation of K(ti_;

- Figures A.2-30 to A.2-35
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VERSION-3 VERSION-4

CAREIN CAREIN

BUFBLK

--FTREE

--CRTLPRS

m SUBRUN

L SPLIT

SPLIT

VLDNML

_BUFBLK

m FTREE

CRTLPRS

t GNIQX

RDCP$

L GNKXY

-- $UBRUN

L SPLIT

SPLIT

m VLDNML

FigureA.l-1 CAREINCalITree

[Note: Boldface on this and following figures indicates routines that

have been added or modified,]
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VERSION-3 VERSION-4

COVRGE COVRGE

-- BUFBLK

SNGFLT

DBLFLT

__ PRNTCVG

-- BUFBLK

-- SNGFL T

-- MSNGFN

-- MSNGMT

_ DBLFLT

-- MDBLFN

-- MDBLMT

-- PRNTCVG

Figure A,1-2 COVRGE Call Tree
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VERSION-3 VERSION-4

COV RG E

L_ SNGFLT

COMPFUN

-- .FGSNGL
SFG 12

-- SUMARS

VSTPINT

PREVNRC

[.-- VLTREC

L CNVLINT

-- VOLTERA

L CNVLINT

-- CVLTAR

[-- VOLTERA

L__CNVLINT

-- GENMNTS

-- TMAXSNG

BUFBLK

COVRGE

-- MSNGFN

L HSGEAR

L_ MSNGFD

-- MSNGMT

L HSGEAR

_-- MSNGMD

Figure A.1-3 Single Fault Call Tree
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VERSION-3 VERSION-4

COV RG E

I_. DBLFLT

_ COMPFUN

f FCDBL

__ SUMARS

__ PREVNRC

I__ VLTREC

L CNVLINT

__ VOLTERA

L CNVLINT

-- GENMNTS

__ TMAXDBL

-- BUFBLK

COY RG E

__ MDBLFN

L_ HSGEAR

L_ MDBLFD

__ MDSLMT

L_ HSGEAR

MDSLMD

Figure A.1-4 Double Fault Call Tree
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VERSION-3 VERSION-4

CARE3 CARE3

-- RLSBRN

t NFLTVDP

GNFLTVC

__ FNCK

--BUFBLK

-- RLSBRN

__ NFL TVDP

-- GNFL TVC

__RDSPS

-- GNFL 7"5

-- FNCK

--BUFBLK

Figure A.I-S CARE3 Call Tree

$9



VERSION-3 VERSION:4

NFLTVDP

CAXLAT

L._. FHSFST

CRXFF

L FRXIFF

f FCLAM
FHSFST

PREEXP

m FGST

FHSFST

m FHDFST

FNCK

B PRNTGH

BUFBLK

BUFFOUT

NFL TVDP

GNCP$

f GNNXX
GNNXY

8UFDA T

GNBP$

GNBXX

GNBXY

GNTXX

GNTX Y

8UFDA T

FNCK

BUFBLK

Figure A. 1-6 NFLTVDP Call Tree
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GNCP$

GNNXX

GNNXY

8UFDAT

Figure A.1-7 GNCPS Call Tree
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GNBPS

GNBXX

GNBXY

GNTXX

FCLAM

FHSFST

FHDFST

-- FLAM

-- FRXIFF

m PREEXP

-- GNTXY

L FHDFST

BUFDA T

Figure A.1-8 GNBPS Call Tree
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VERSION-3 FAULT VECTOR

SELECTION PROCEDURE

VERSION-4 FAULT VECTOR

SELECTION PROCEDURE

RDSP$

GNFLTVC

-- FPSTAR

-- ARZERO

GNFL"I S

•t FPSTAR

PRFLTS

-- GNBXY

-- UNRELQ

t FINTGRT

SUMMA T

--FPSTAR

-- CKSPS

-- GNBXY

--UNRELQ

t FINTGRT

SUMMA T

Figure A.1-9 GNFLTVC Call Tree
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VERSION-3 VERSION-4

SUMMAT

- BUFFIN

- FAPC

- FLAM

-- FPSTAR

-- FAC

L FBCRTL

I BXYC

FPMUX

- FCYJ

L FDSCRTL

I BXYC

FPMUX

-- FPSTREC

SUMMA T

-- GNFXX

I FPMUX

FPSTAR

-- FBIXX

- FB2XX

- FBIXY

- FB2XY

-- FPSTAR

-- BUFDA T

Figure A.1-10 SUMMATCall Tree
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CAREIN

Read & check User's Input Data

Process System Fault Tree e---FTREE

Loop over Critical Pairs Fault Trees

Process Critical Pairs Fault Tree

Process MINTERM data

Buffer out COVERAGE data (REC, CREC2, CREC3, CREC4)

Buffer out RELIABILITY data (REC, RREC2)

Generate SUBRUN data SUBRUN & SPLIT

Loop over SUBRUN's

Buffer out SUBRUN data (RREC3, RREC4)

Figure A.2-1 CAREIN Design Sheet
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CRTLPRS

Position I/0 Units

Loop over MINTERM subfiles

Read PRBMT, MNTRMV

Read NUNT

Process: ICSTG, KFSTG, LSTSTG, IISTG, IUSTG

Process NOP data _ GNIQX

Read MINTERM data
_m

RDCPS (EOFFLG)

Write KNT data

Figure A.2-2 CRTLPRS Design Sheet
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GNIQX

Loop over stages (x) in SUBRUN

Initialize IQXNOP and KQXNOP arrays for stage

IF default NOP data, THEN

--IP" Loop over kqx (= 1,10) until qx = mx

J _QXNOP(kqx, X) = q(kq_,X) = nx-kqx+lI

ELSE user defined NOP data

--I_ Loop over kqx ( = 1,5) until NOP(kqx,X) = 0

kqm = kqx

IQXNOP (kqx, X) = q(kqx, X) = NOP (kqx,X)

IQXNOP (k,lm,x) = q(kqrn,_) =mx

ENDIF

--I=, Loop over fx-lJx ( = 0,9)

Compute qx defined by nx-lx+ P-x.

KQXNOP (Rx-px, X) = kqx

Figure A.2-3 GNIQX Design Sheet
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RDCPS (EOFFLG)

Initialize KNT array

Loop over MINTERMS

Read MINTERM

Compute: x. m_ Jx, Y, my, jy

For x<-y compute KNT (ix, Y, kqy) GNKXY (x, ix, rex, y,ly, my)

For x >- y compute KNT (jy, x, kcl x)

IF end of MINTERM file, THEN

EOFFLG = .T.

ELSE

GNKXY (y, jy, my, x, ix, rex)

Figure A.2-4 RDCPS Design Sheet
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GNKXY (x, ix, rex, y, jy, my)

IF x=y, THEN

LOOp over qx (kqx= 1,10) until qx<mx or qx<my

Sum:

ELSE x =y

KNT (Jx,x, kqx) = KNT (Jx_x, kqx) + 1

LOOp over qy (kqy = 1,10) u_ltil qy<my

Sum:

ENDIF

KNT(jx, Y, kqy) = KNT (ix, Y, kqy) + 1

Figure A.2-S GNKXY Design Sheet
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MSNGFN

Obtain parameters for fault type

Initialize states and coefficient matrix

Initialize output coverage functions

Loop over time steps (t = IT)

Integrate system state one time step

Compute output coverage functions

Check for steady state

HSGEAR, MSNGFD

Figure A.2-6 MSNGFN Design Sheet

MSNGFD

Compute time derivatives of states

Figure A.2-7 MSNGFD Design Sheet
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MSNGMT

Initialize moments for t = 0 (IT = 1)

Loop over time steps (IT = 2, ITSTPS)

Integrate weighted output coverage

functions one reliability time step

Store moments

HSGEARo MSNGMD

Figure A.2-8 MSNGMT Design Sheet

MSNGMD (t)

Locate t in time array for output coverage functions

Compute weighted output coverage functions

Figure A.2-9 MSNGMD Design Sheet
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MDBLFN

Obtain parameters for fault type

Initialize states and coefficient matrix

Initialize output coverage functions

Loop over time steps (t = IT)

Integrate system state one time step

Compute output coverage functions

Check for steady state

HSGEAR, MDBLFD

Figure A.2-10 MDBLFN Design Sheet

MDBLFD

Compute time derivatives of states

FigureA.2-11 MDBLFD Design Sheet
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MDBLMT

Initialize moments for t = 0 (IT = 1)

Loop over time steps (IT = 2, ITSTPS)

Integrate weighted output coverage

functions one reliability time step

Store moments

HSGEAR, MDBLMD

Figure A.2-12 MDBLMT Design Sheet

MDBLMD (t)

Locate t in time array for output coverage functions

Compute weighted output coverage ft, nctions

Figure A.2-13 MDBLMD Design Sheet
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CARE3

Buffer in CVRGAR array

Buffer in TITLE array

Buffer in REC1

Buffer in REC2

Compute KWT from system MINTERM file

Loop over SUBRUNS

Buffer in REC3

Buffer in REC4

Display

Compute Unreliability per Subrun RLSBRN

Compute SRNPSTF if a system fault tree

Compute P* if a system fault tree

Write SUMMARY

Figure A.2-14 CARE3 Design Sheet
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RLSBRN

Convert failure rates to correct time base

Create TRNSFC array

Compute non-__,dependent functions NFLTVDP

IF Version 3 fault generation procedure, THEN

Jl' Generate fault vectors _1_

ELSE Version 4 fault generation procedure

Extract SUBRUN fault tree 4_
Generate fault vectors _

ENDIF

GNFLTVC

ROSPS

GNFLTS

Figure A.2-15 RLSBRN Design Sheet
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NFLTVDP

Compute GFLD

Buffer in KNT data

IF Critical Pairs for SUBRUN,

,L
ELSE

THEN

Pr.ocess SUBRUN for which Critical Pairs are defined

" Process SUBRUN for which no Critical Pairs are defined

ENDIF

Generate NXX and NXY data 4_

Generate BXX and BXY data 4--

GNCPS

GNBPS

Figure A.2-16 NFLTVDP Design Sheet
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RDSPS

Position I/0 units

Loop over all MINTERMS for system fault tree

Read next minterm, T

Extract the MINTERM L for current SUBRUN

tF L does not cover a prevfous MINTERM, THEN

Enter _ in fault tree data structure

ENDIF

Note: The logic in RDSPS and the order of MINTERM's stored on the

system minterm file assures that only a MINCUT set of mmterms is
stored for the SUBRUN fault tree.

Figure A.2-17 RDSPS Design Sheet
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GNFLTS

Loop over fault vector sets Ln (n = 1, 9)

Loop over I _ l-n

Compute P*(tl!)

IF P" (tl _R)> PSTRNC, THEN

Process _0 4--.--PRFLTS

ENDIF

v

IF

l
ENOIF

n>2 and LC did not affect calculation, THEN

Monitor relative change in QSUM and P'suM

IF "small", end processing

Figure A.2-18 GNFLTS Design Sheet
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PRFLTS

IF _R=O, check if I causes systems failure CKSPS (1_)

- Case: t= 0

Initialize display formats

Compute Q(tlO)

Display

UNRELQ

- Case: _B=O._Qdoes not cause system failure

Compute Q(tl_

Display

- Case: __=0, i causes system failures

UNRELQ

Compute P*(t,_

Display

4----- FPSTAR

Figure A.2-19 PRFt.TS Design Sheet
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CKSPS (0)

IFAIL = 0

IF _0==0, THEN

IFAIL = 1

IF $UBRUN fault tree, THEN

IF

ENDIF

does not cover any minterm, THEN

IFAIL = 0

ENDIF

ENDIF

Note: If there is no user supplied system fault tree or if the

extracted set of MINTERM$ for a SUBRUN is empty, the
SUBRUN fault tree is assumed to be an OR tree.

Figure A.2-20 CKSPS Design Sheet
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UNRELQ

Loop over t ( = IT)

Compute K(tl_

Compute Q(tl_

SUMMAT

FINTGRT

Figure A.2-21 UNRELQ Design Sheet
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GNCPS

Position 1/O units

v Loop over x

IF x,xisc.p., THEN

Compute N_x
Write NXX data

ENDIF

GNNXX (x)

v

IF NSTGS >l, THEN

Loop over y

Loop over x < y

IF x,yarec.p., THEN

Compute N_y
Write NXY data

ENDIF

GNNXY (x,y)

Ir

ENDIF

Figure A.2-22 GNCPS Design Sheet
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GNNXX (x)

Loopoverqx(kqx = 1,10)

Compute Nxx (qx)

Figure A.2-23 GNNXX Design Sheet
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GNNXY (x,y) [assume x <y]

Loop over qy (kqy = 1, 10)

Loop over qx (kqx = 1, 10)

Compute Nxy(qx,qy)

v

v

Figure A.2-24 GNNXY Design Sheet
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GNBPS

Position I/O Units

r-'--'-_C Loop over x
ompute functions of time

IF x,x is c.p., THEN

Read NXX data

IF non-zero BXX data, THEN (nx__2)

Compute B_x

ENDIF

ENOIF

Write BXX data

IF NSTGS > 1, THEN

Loop over y

Loop over x<y

IF x,ylsc.p., THEN

Read NXY data

IF

1
ENDIF

ENDIF

non-zero BXY data. THEN (nxZ 1 and ny_ 1)

Compute Bxy

Compute functions of time

Write BXY data

ENDIF

Figure A.2-25 GNBPS Design Sheet

85

GNTXX (x)

GNBXX (x)

GNBXY (x,y)

GNTXY (x,y)



GNBXX (x)

LOOpovergx ( = O, Ix)

mpute Bxx (IJx)

Figure A.2-26 GNBXX Design Sheet
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GNBIXY (x,y) [Assume x<y]

Loop over py ( = 0, _ty)

-_ Loop over p_ ( = O, tt.)

I Compute Bxy (px,lJy)

L
i

Figure A.2-27 GNB×Y Design Sheet
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GNTXX (x,y)

Loop over all time steps (t = IT)

Loop over all fault categories, _ (i = 1,5)

Compute r(t_xi)

Compute r (t_x)

Loop over al! time steps (t = IT)

Loop over all fault categories, _ (i = 1,5)

Compute )_(t_xi), Z _p, Y. _.T

Compute HL (t_), Y. Hqo' £ HLT

Compute h; (l_xJ, Y. hr_, Z hFT

Compute HB (tJx,), E Hep, _ HgT

Compute ( 1-£ HLT) £ _p, ( 1"£HLT) £ _,T

Compute He (t, x,)

Loop over all time steps (t = IT)

YLoop over all fault categories, _ (i = 1,S)

Compute ho_ (t_x,), £ hoFp, T. hOFT

Figure A.2-28 GNTXX Design Sheet
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GNTXY (x,y)

Loop over all time steps (t = IT)

Case: x,y

Loop over all faL/t categories, xi (i = 1,5)

Loop ow_r all fault categories, y_ (j = 1,5)
Comput(. _ hop (t_yj, xi), _- hopp, £ hop T

Case: y,x

Loop over atl faL_lt categories, yj (j = 1,5)

Loop ow_r all fault categories, x_(i = 1,5)
Comput_ hop (tlx, yj), T.hopp, T. hop T

Figure A.2-29 GNTXY Design Sheet



SUMMAT (tl_

Position I/0 units, Process IS, Initialize

Loop over x

Read BXX data

Add _t(1)terms to SUMA

Loop over x

Generate x functions

Read BXX data

IF x,x asc.p., THEN

IF non-zero 8XX data, THEN

Add .\(2) term to SUMA

Add I_ term to SUMA

Add .\(2) term to SUMC

4-- GNFXX (t,x)

(nx> 2 and J_x_> Ecx)

FB2XX (x)

_1_ FBlXX (x)

FB2XX (x)

ENDIF

ENDIF

Figure A.2-30 SUMMAT Design Sheet
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IF NSTGS > 1, THEN

Loop over y

Loop over x<y

IF x,y is c.p., THEN

Read BXY data

IF non-zero 8XY data, THEN (nx_>1 and n,/Z 1

Add ,_2} term to SLJMA

Add IJ term to SUMA

Add k ,2) term to SdMC

and gx_ Rc_,and 0y_ gCy)

FB2XY (x,y)

FBIXY (x,y)

FB2XY (x,y)

ENDIF

ENDIF

ENDIF

m_

Compute P* (tI.Q),a'(tlf)

Compute K(tl.°), store in SUMK(IS)

Figure A.2-30 SUMMAT Design Sheet (Continued)
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GNFXX (t, x)

IF Ox -> 1, THEN

Compute _l-l(x)

Compute P* (tl__.-!(x))

Compute nx-0_÷ 1

Compute PSLX (x) = (nx-Bx+ 1), P" (tl£-! (x))

Loop over i = 1,2

Compute _fx= ltx- i + 1

Loop over Llx= 0, iOx

Com4oute il_= i0x+ 1

Compute FPMX (x, IJx,i.o) = _(t,_liO.)

ELSE

ENDIF

Compute FPMX (x, l, 1) = P (t,010)

Figure A.2-31 GNFXX Design Sheet
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FBIXX (x)

Case: P,x,x

SUMX = O.

Looo over ].tx ( = O,Rx)

SUMX = SUMX + Bxx (_x-IJxJ* P(t,IJxi-°x)* _* rlJ_-l)

FB1XX = SUMX

Case: T,x,x

SUMX = O.

Loop over Ux (= O,_x)

I SUMX = SUMX + Bxx(_,'p,J*P(t.pJ_l =_t.

E

FB1XX = (nx-.°x)*SUMX

Figure A.2-32 FBIXX Design Sheet
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FBIXY(x,y)

Case:P,x,y

SUMY=O.

Loop over Uy( = O,fy)

SUMX = O.

Loop over Ux ( = O,l_)
SUMX = SUMX + Bxy (B_-I.I=, By-I.tyJ * P(t,l.lxiRx) * I_

SUMY = SUMY + SUMX * P(t,l.lylOy) * Uy

FB1XY = SUMY

Case: P,y,x

SUMX=O.

LOOp over Ux ( = 0,R_)

SUMY = O.

Loop over Uy ( = O,Jty)
SUMY = SUMY + Bxy (J_y'Uy, B.'Ux)* P(t,UytOy)* gy

SUMX = SUMX + SUMY * P(t,uJO,.) * I.ty

FBIXY = SUMX

Figure A.2-33 FB1XY Design Sheet
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Case: T,x,y

SUMY = O.

-_ Loop over IJy ( = O,Ry)

SUMX = O.

Loop over I.Ix( = O,R_)
SUMX = SUMX + Bxy (_x-_lx, Ry'_Jy)* P(t,IJxiRx_

SUMY = SUMY + SUMX * P(t,_ly_gy) * l_y

FB1XY = (n_-Rx) * SUMY

Case: P,y,x

SUMX = O.

Loop over IJ_ ( = O,RJ

SUMY = 0

Loop over tJy ( = O,Jty)
SUMY = SUMY + Bxy (_y-lJy, J_x'lJx) * P(t,l, tyiRy)

SUMX = SUMX ÷ SUMY * P(t,|Lylgy) * l_y

FB1XY = (ny-Ry) * SUMX

Figure A.2-33 FBIXY Design Sheet (Continued)
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FB2XX (x)

-- Case: P,x,x

Increment Ix

5UMX = 0.

Loop over IJx(= O,f_)l

.J SUMX = SUMX + Bxx(gx-Uxi * P(t,U_jOx) * Ux

[

FB2XX = SUMX

-- Case: T,x,x

Increment 0x

SUMX = O.

Loop over IJ_ ( = O,J_)

SUMX = SUMX + B,_x(Ox'_xJ"P(t,l.l,,_)

FB2XX = (nx-g x) * SUMX

Figure A.2-34 FB2XX Design Sheet
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FB2XY (x,y)

Case: P,x,y

Increment Oy

$UMY= O.

Loop over IJy( = O,Jty)

SUMX = 0.

Loop over IJx ( = O,Ox)

SUMX = SUMX * Bxy (Jtx-I-lx, Oy°lJy) * P(t,LlxiOx) * P.

SUMY = SUMY + SUMX * P(t,layJy)

FB1XY = SUMY

Case: P,y,x

Increment _,

SUMX=0

Loop over IJ, i = 0,Jt_)

SUMY = 0.

Loop over t_y ( = 0,Jty)

SUMY = SUMY + Bxy (gy-IJy, Jtx-IJ_) * P(t,]Jyigy) * IJy

SUMX = SUMX + SUMY * P(t,_ly_0y)

FBIXY = SUMX

Figure A.2-35 FB2X v Design Sheet
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Case: T,x,y

Increment Oy

SUMY =0.

Loop over Uy ( = 0,0y)

SUMX = 0.

Loop over Ux ( = O.Rx)
SUMX = SUMX + Bxy (Ox-I.lx, "#y'My)* P(t,P.jBx)

SUMY = SUMY + SUMX * P(t, Uy_ly)

FBIXY = (nx-R.) * SUMY

Case: P,y,x

Increment gx

SUMX = O.

Loop over 1.t,( = O._g.)

SUMY = O.

Loop over Uy(= O,Oy)
SUMY = SUMY + Bxy (J_y'gy, Bx'IJx)* P(t,Uy_fy)

SUMX = SUMX + SUMY * P(t,UylOy)

FB1XY = (ny-By) * SUMX

Figure A.2-35 FB2XY Design Sheet (Continued)
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